2,982 research outputs found

    Geomorfología actual. Guía conceptual, temática y bibliográfica

    Get PDF

    COMPSs-Mobile: parallel programming for mobile-cloud computing

    Get PDF
    The advent of Cloud and the popularization of mobile devices have led us to a shift in computing access. Computing users will have an interaction display while the real computation will be performed remotely, in the Cloud. COMPSs-Mobile is a framework that aims to ease the development of energy-efficient and high-performing applications for this environment. The framework provides an infrastructure-unaware programming model that allows developers to code regular Android applications that, transparently, are parallelized, and partially offloaded to remote resources. This paper gives an overview of the programming model and describes the internal components of the toolkit which supports it focusing on the offloading and checkpointing mechanisms. It also presents the results of some tests conducted to evaluate the behavior of the solution and to measure the potential benefits in Android applications.Peer ReviewedPostprint (published version

    Simposium acerca de procesos geomorfolĂłgicos actuales

    Get PDF

    Geoecología del paisaje en el macizo litoral catalán

    Get PDF

    A hierarchic task-based programming model for distributed heterogeneous computing

    Get PDF
    Distributed computing platforms are evolving to heterogeneous ecosystems with Clusters, Grids and Clouds introducing in its computing nodes, processors with different core architectures, accelerators (i.e. GPUs, FPGAs), as well as different memories and storage devices in order to achieve better performance with lower energy consumption. As a consequence of this heterogeneity, programming applications for these distributed heterogeneous platforms becomes a complex task. Additionally to the complexity of developing an application for distributed platforms, developers must also deal now with the complexity of the different computing devices inside the node. In this article, we present a programming model that aims to facilitate the development and execution of applications in current and future distributed heterogeneous parallel architectures. This programming model is based on the hierarchical composition of the COMP Superscalar and Omp Superscalar programming models that allow developers to implement infrastructure-agnostic applications. The underlying runtime enables applications to adapt to the infrastructure without the need of maintaining different versions of the code. Our programming model proposal has been evaluated on real platforms, in terms of heterogeneous resource usage, performance and adaptation.This work has been supported by the European Commission through the Horizon 2020 Research and Innovation program under contract 687584 (TANGO project) by the Spanish Government under contract TIN2015-65316 and grant SEV-2015-0493 (Severo Ochoa Program) and by Generalitat de Catalunya under contracts 2014-SGR-1051 and 2014-SGR-1272.Peer ReviewedPostprint (author's final draft

    Physical Connectivity Between the NE Atlantic Seamounts

    Get PDF
    Within the Portuguese Exclusive Economic Zone, the Great Meteor and Madeira-Tore complexes are highly productive areas, which are likely to be classified as marine protected areas (MPAs) due to their ecological vulnerability. This was the main focus of the BIOMETORE project and, framed on it, the aim of the present study was to investigate the physical connectivity between both seamount complexes. Using the HYbrid Coordinate Ocean Model coupled with the Connectivity Modeling System (CMS) (a Lagrangian tool), a series of experiments was conducted in order to determine the influence of the main oceanographic phenomena governing the area in: (i) the origin of the particles that reach each complex, (ii) their capacity to capture and retain incoming particles, and (iii) the physical connectivity between them as well as the intra-connectivity within each seamount system. Due to the geographical location of both groups of seamounts, the Azores Current (AzC) and its associated eddies were identified as the main transport pathways, its influence being stronger at intermediate waters and decreasing with depth. Notwithstanding, the Great Meteor and the MadeiraTore were mainly affected by the AzC southward and eastward branches, respectively, resulting in a non-significant connectivity between the two groups. Meanwhile, the inter-connectivity between seamounts slightly varied with depth at the Great Meteor complex while increasing at Madeira-Tore. In addition, the Plateau, Irving, and Cruiser (PIC) seamounts from the Great Meteor complex and Gorringe and Coral from the Madeira-Tore complex proved to incorporate the regional connectivity routes. Although containing the three smallest seamounts, Madeira-Tore showed the higher capturing capacity per square kilometer, highlighting the influence of the "sticky water effect." In the Great Meteor complex, the "seamount effect" seems to be the main phenomenon responsible for the greater retention and self-recruitment abilities of these seamounts. The presented results provide valuable information for the design of a MPA to preserve these vulnerable habitat

    Enabling GPU Support for the COMPSs-Mobile Framework

    Get PDF
    Using the GPUs embedded in mobile devices allows for increasing the performance of the applications running on them while reducing the energy consumption of their execution. This article presents a task-based solution for adaptative, collaborative heterogeneous computing on mobile cloud environments. To implement our proposal, we extend the COMPSs-Mobile framework – an implementation of the COMPSs programming model for building mobile applications that offload part of the computation to the Cloud – to support offloading computation to GPUs through OpenCL. To evaluate our solution, we subject the prototype to three benchmark applications representing different application patterns.This work is partially supported by the Joint-Laboratory on Extreme Scale Computing (JLESC), by the European Union through the Horizon 2020 research and innovation programme under contract 687584 (TANGO Project), by the Spanish Goverment (TIN2015-65316-P, BES-2013-067167, EEBB-2016-11272, SEV-2011-00067) and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft
    • …
    corecore